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ABSTRACT

This project has applied theory of linear algebra called “singular value decomposition (SVD)” to
digital image processing. Two specific areas of digital image processing are investigated and tested.
One is digital image compression, and other is face recognition. SVD method can transform matrix A

into product USV", which allows us to refactoring a digital image in three matrices. The using of
singular values of such refactoring allows us to represent the image with a smaller set of values, which
can preserve useful features of the original image, but use less storage space in the memory, and
achieve the image compression process. The experiments with different singular value are performed,
and the compression result was evaluated by compression ratio and quality measurement. To perform
face recognition with SVD, we treated the set of known faces as vectors in a subspace, called “face
space”, spanned by a small group of “base-faces”. The projection of a new image onto the base-face is
then compared to the set of known faces to identify the face. All tests and experiments are carried out
by using MATLAB as computing environment and programming language.
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1. INTRODUCTION the 2000s, digital image processing has become

the most common form of image processing,

Image processing is any form of information
processing, in which the input is an image.
Image processing studies how to transform,
store, retrieval the image.  Digital image
processing is the use of computer algorithms to
perform image processing on digital images.

Many of the techniques of image processing
were developed with application to satellite
imagery, medical imaging, object recognition,
and photo enhancement. With the fast
computers and signal processors available in the

and is generally used because it is not only the
most versatile method, but also the cheapest [6].

1.1 Digital Image Processing

An image can be defined as a two-dimension
function f'(x, y) (2-D image), where x and y are
spatial coordinates, and the amplitude of f at
any pair of (x, y) is gray level of the image at
that point. For example, a grey level image can
be represented as:



f; Where  f. =f(x.y;)

When x, y and the amplitude value of f are
finite, discrete quantities, the image is called “a
digital image”. The finite set of digital values is
called picture elements or pixels. Typically, the
pixels are stored in computer memory as a two-
dimensional array or matrix of real number.

Color images are formed by a combination of
individual 2-D images. Many of the image
processing techniques for monochrome images
can be extend to color image (3-D) by
processing the three components image
individually [2].

Digital Image Processing (DIP) refers to
processing a digital image by mean of a digital
computer, and the study of algorithms for their
transformation. Since the data of digital image
is in the matrix form, the DIP can utilize a
number of mathematical techniques. The
essential subject areas are computational linear
algebra, integral transforms, statistics and other
techniques of numerical analysis. Many DIP
algorithms can be written in term of matrix
equation, hence, computational method in linear
algebra become an important aspect of the
subject [3].

Digital Image processing encompasses a wide
and varied field of application, such as area of
image operation and compression, computer
vision, and image analysis (also called image
understanding). There is the consideration of
three types of computerized processing: low-
level processing is characterized by that both its
inputs and outputs are images; mid-level
processing on images is characterized by the
fact that its inputs are images, but outputs are
attributes extracted from those images, while
higher-level processing involves “making
sense” of an ensemble of recognized objects as
in image analysis, and performing the cognitive
function associated with human vision [3].

In particular, digital image processing is the
practical technology for area of:
e Image compression
Classification
Feature extraction
Pattern recognition
Projection
Multi-scale signal analysis

1.2 Objective of the Project

The objective of this project is to apply linear
algebra “Singular Value Decomposition (SVD)
“to mid-level image processing, especially to
area of image compression and recognition. The
method is factoring a matrix A into three new
matrices U, S, and V, in such way

that 4 = USV'" . Where U and V are orthogonal
matrices and S is a diagonal matrix.

The experiments are conducted under different
term k of singular value, and the outer product
expansion of image matrix A4 for image
compression; this project also demonstrates
how to use SVD approach for image processing
in area of Face Recognition (FR).

In this project, we assume a matrix 4 with m
lines and n columns, m=2n, this assumption is
made for convenience only, all the result will
also hold if n=2 m [8].

MATLAB is wused as a platform of
programming and experiments in this project,
since MATLAB is a high-performance in
integrating computation, visualization and
programming.

The reminder of this project is organized as
follows: section2 describes the theory of
Singular Value Decomposition; the section3 is
methodology for applying SVD to image
processing, section4 shows the
experimentations and results obtained. Section5
explains my own contribution to this project.
Finally, section6 presents the conclusion and
the further work proposed.



2 THEORY OF SINGULAR VALUE
DECOMPOSITION

2.1 Process of Singular Value Decomposition

Singular Value Decomposition (SVD) is said to
be a significant topic in linear algebra by many
renowned mathematicians. SVD has many
practical and theoretical values; special feature
of SVD is that it can be performed on any real
(m, n) matrix. Let’s say we have a matrix 4
with m rows and »n columns, with rank » and » <
n < m. Then the 4 can be factorized into three
matrices:

A=USV" (1)

(See the figurel for illustration)
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Figurel. Illustration of Factoring A to USV

Where Matrix U is an m % m orthogonal matrix
U=[u,,u,,.u,,u,.,.,u,] (2)

column vectors u,, fori =1, 2, ..., m, form an
orthonormal set:

L,,i=j
wu =0.=1"7
==L &)

And matrix V'is an n x n orthogonal matrix

V=[V,Vy,V,,V, s, V, ] @)
column vectorsv, fori=1, 2, ..., n, form an
orthogormal set:

L,,i=j
viv.=6.=2""
L J y O,,,iij (5)

Here, S is an m x n diagonal matrix with
singular values (SV) on the diagonal. The
matrix S can be showed in following

(o, 0 -+ 0 0O - 0]
0 o, - 0 0 - 0
0 0 - o, 0 - 0
S = (6)
0O 0 - 0 o, - 0
0 0 0 0 o,
10 0 0 0 0 |
For i =1, 2, ..., n, 6, are called Singular Values

(SV) of matrix 4. It can be proved that

6,206,2-->20,>0, and

Gr+l:Gr+2:“.:GN:0' (7)

For i =1, 2, ..

Values (SVs) of matrix 4. Thev,’s andu,’s are

., n, o, are called Singular

called right and left singular-vectors of 4 [1].

2.2 Properties of the SVD

There are many properties and attributes of
SVD, here we just present parts of the
properties that we used in this project.

1. The singular value o,,0,, -,0, are unique,
however, the matrices U and V are not
unique;

2. Since A"4 =VSTSV", so V diagonalizes
A" A4, it follows that the v; s are the
eigenvectorof A" 4.



3. Since 44" =USS"U", so it follows that U
diagonalizes 44" and that theu, ’s are the

eigenvectors of 44" .

4. If A has rank of r then v;, v;, ..., v, form an
orthonormal basis for range space of 47,
R(AT), and w, w, ... u. form an

orthonormal basis for .range space 4, R(A).
5. The rank of matrix A is equal to the
number of its nonzero singular values [4].

3. METHODOLOGY OF SVD APPLIED
TO IMAGE PROCESSING

3.1 SVD Approach for Image Compression

Image compression deals with the problem of
reducing the amount of data required to
represent a digital image. Compression is
achieved by the removal of three basic data
redundancies: 1) coding redundancy, which is
present when less than optimal; 2) interpixl
redundancy, which results from correlations
between the pixels; 3)  psychovisual
redundancies, which is due to data that is
ignored by the human visual [2].

The property 5 of SVD in section 2 tells us “the
rank of matrix A is equal to the number of its
nonzero singular values”. In many applications,
the singular values of a matrix decrease quickly
with increasing rank. This propriety allows us
to reduce the noise or compress the matrix data

by eliminating the small singular values or the
higher ranks.

When an image is SVD transformed, it is not
compressed, but the data take a form in which
the first singular value has a great amount of the
image information. With this, we can use only a
few singular values to represent the image with
little differences from the original.

To illustrate the SVD image compression
process, we show detail procedures:

A=USV" =Y ou,v/ (11)

i=1

That is A can be represented by the outer
product expansion:

T T T
A=ouv, +o,u,v, +---+o,u.v, (12)

When compressing the image, the sum is not
performed to the very last SVs, the SVs with
small enough values are dropped. (Remember
that the SVs are ordered on the diagonal.)

The closet matrix of rank & is obtained by
truncating those sums after the first & terms:

A, =cuyv, +ou,v, +-+ou,v, (13)
The total storage for 4, will be

k(m+n+1) (14)

The integer k£ can be chosen confidently less
then n, and the digital image corresponding
to 4, still have very close the original image.
However, the chose the different & will have a
different corresponding image and storage for it.
For typical choices of the k, the storage
required for 4, will be less the 20 percentage.
In this project, experiment and testing for
different k are carried out and the result will
show in section 4.

3.2 Image Compression Measures

To measure the performance of the SVD image
compression method, we can computer the
compression factor and the quality of the
compressed image. Image compression factor
can be computed using the Compression ratio:

Cr=m*n/(k(m +n+1)) (15)

To measure the quality between original image
A and the compressed image 4, , the

measurement of Mean Square Error (MSE) [10]
can be computed:



MSE=—L % 3 (f,r3) = £, ) (16)

y=1 x=1
3.3 SVD Approach for Face Recognition

Over the past decades, face image compression,
representation and recognition has drawn wide
attention from researchers in arrears of
computer vision, neural network, pattern
recognition, machine learning, and so on. The
application of face recognition includes:

Access Control based on the face recognition,
Computer -human interaction, Information
Security, Law enforcement, Smart Car etc. [11]

Several approaches to face recognition have
been proposed for the 2-dimensional facial
recognition. Much of the work has focused on
detecting individual features such as eyes, nose,
mouth, and head outline, and defining a face
model by the position, size, and relationships
among these features [12][13].

SVD approach treats a set of known faces as
vectors in a subspace, called “face space”,
spanned by a small group of “base-faces™[1]. It
likes Principal Component Analysis (PCA) [14],
recognition is performed by projecting a new
image onto the face space, and then classifying
the face by comparing its coordinates (position)
in face space with the coordinates (positions) of
known faces. However, the SVD approach has
better numerical properties than PCA.

In this case, we redefined the matrix A as set of
the training face. Assume each face image has
m % n =M pixels, and is represented as an M X
1 column vectorf,, a ‘training set’ § with N
number of face images of known individuals
forms an M x N matrix:

S=[f.f,....f,] (17)

The mean image f of set S, is given by

>t (18)

a=f—-f,i=12,..N (19)
This gives another M x N matrix 4:

A=[aa,,..a,] (20)

Since {u,,u,,...,u, } form an orthonormal basis

for R(A), the range (column) subspace of matrix
A. Since matrix 4 is formed from a training set
S with N face images, R(A4) is called a ‘face
subspace’ in the ‘image space’ of m X n pixels,
and eachu,, i=12,...,r, can be called a ‘base-
face’.

Let x (= [x,X,,....x,]" ) be the coordinates

(position) of any m % n face image f in the face
subspace. Then it is the scalar projection of

f —f onto the base-faces:
x=[u,u,..,ul (-7 @21)

This coordinate vector x is used to find which
of the training faces best describes the
face f. That is to find some training facef, ,

1

i=1,2,...,N, that minimizes the distance:
& = x-x[, =[x-x)"(x-x)1"*  (22)

where x; is the coordinate vector of f;, which is

the scalar projection of f —f onto the base-
faces:

x = [u, ooy u] (£ =) (23)

A face f is classified as face f when the

minimum & is less than some predefined



threshold &,. Otherwise the face f is classified

as “unknown face”.
If f is not a face, its distance to the face
subspace will be greater than 0. Since the vector

projection of f —f onto the face space is given
by

f,=[u,u,,.u]x (24)

where x is given in (21).

The distance of f to the face space is the
distance between f—f and the projection f,

onto the face space:

&= ||(f _I) _fp”z = [(f ~f- fp)T(f _f_fp)]l/z
(25)

If ¢, is greater than some predefined threshold

&, then f is not a face image.

3.4 Steps to Conduct FR with SVD

The flowchart for face recognition with SVD is
showed in the Figure2. The explanations of
each step as following:

1. Obtain a training set S with N face
images of known individuals.
2. Compute the mean face f of S by (18)

3. Forms a matrix 4 in (20) with the
computed f .

4. Calculate the SVD of 4 as shown in (1)

5. For each known individual, compute the
coordinate vector x. from (23). Choose a
threshold &, that defines the maximum
allowable distance from face space.
Determine a threshold &, that defines

the maximum allowable distance from
any known face in the training set S.

Read Image
Data

From Training
Set ?

Compute the mean
face

a, =fl.—f No
Create A

!

Calculate the SVD
of A

¢ A 4

Compute the Compute the
vector X, in base- vector X in base-

space Space

A A

& = [x—x,

Face IN the
training set

Face NOT IN
the training set

Figure2. Flow chart of Face Recognition
with SVD

6. For a new input image f to be identified,
calculate its coordinate vector x from

(21), the vector projection f, , the



distance ¢, to the face space from (25).

If ¢, > & the input image is not a face.

7. 1f ¢, < g, compute the distance ¢; to

each known individual. If all & > ¢,,

the input image may be classified as
unknown face, and optionally used to
begin a new individual face. If ¢, < g,

and some ¢ < g,, classify the input

image as the known individual
associated with the minimum ¢, (x),

and this image may optionally added to
the original training set. Steps 1-5 may
be repeated. This can update the system
with more instances of known faces [1].

4. EXPERIMENTATIONS AND RESULTS

4.1 Result of Experimentations for Image
Compression

Figure3 shows examples of images used for the
system tests under different K terms. i) shows
the original images whereas a) shows the results
of the reconstruction image using 10 singular
values, and c) shows the results using 20 values
and so on. The observation on those examples,
we found when k1 < 20, the images are blurry
and with the increase of singular values we
have a better approach to the original image.
Tablel shows a summary of the results obtained
with the measure of the storage space, and the
error measures for the tested images.

b) K=15 ¢) k=20

a) K=10

g) Origial
Figure3. Examples of a Image Used to Test
Image Compressing

Tablel. Summery of the Result for Image
Compression

K Storage Cg MSE

Space

(bytes) Comp (Quality)
10 2050 5.03 108.11
15 3075 3.35 63.15
20 4100 2.51 40.39
25 5125 2.01 27.22
30 6150 1.68 15.64
40 8200 1.26 9.07
original 10304 1

With the results from tablel, we have couple of
the observations:

1. Using less singular value (smaller K), the.
better compression ratio is achieved

2. However, the more singular value is used
(larger K), quality measurement MSE is
smaller (better image quality), and the
reconstructed images are more equal to
the original, but using more storage
space.

3. For the testing image, the acceptable
image quality is about with k=25, and
compression ratio is Cg = 2.01.

4. The image close to original image when
k =40. At this point CR = 1.26, and
MSE =9.07.



4.2 Results for Face Recognition with SVD

The test is under the training set with image
Size: M = 92 x 112 = 10,304, the number of
known individuals: N = 20, Different
Conditions: All frontal and slight tilt of the head,
different facial expressions.

Essentially, a face image is of M (say 10,000)
dimension. But the rank » of matrix 4 is less
than or equals N. For most applications, a
smaller number of base-faces than r are
sufficient for identification. In this way, the
amount of computation is greatly reduced. The
following figures show the base face image,
the average of training set image, and the
training set image we used for this experiment.

FigureS. A Computed Mean Face Image of
Training Set Images

S MY CONTRIBUTION TO THIS
PROJECT

This part is a special section which emphasizes
my contribution to this project. A summery of
my contribution is list following:

1. tested and evaluated the digital image
compression under different k terms by
using SVD theory;

2. Recoded the program of face
recognition by applying matrices
operation in the MATLAB and reduced
the lines of the code, tested it with 20
face images

3. Invested the characteristics of singular
values and singular vectors in the image
processing.

More detail explanations will be given below

5.1 Experiments on Characteristics of SVD

In digital image processing, image features are
divided into four groups: visual features,
statistical pixel features, transform coefficient
features, and algebraic features. SVD technique
can be considered as an algebraic feature [16].
The algebraic features usually represent
intrinsic properties.

Refer to section2.2; the first property of SVD is
that: the singular values o,,0,,--,0, are

unique, but the matrices U and V are not unique

Dr.Zeng was interested in that the singular
values are more important since its uniqueness;
it is naturally thinking that SVs is the most
important attribute of image matrix. It could be
used for recognition.

However, with experiments on exchange the
SVs of two images, the result is very interesting
and it shows that the singular-vectors (left and
right) are more important for reconstruction of
the original image.

The first experiment was designed to use two
person’s face images, on which we performed



SVD decomposition. For example, the face
images of Janet (4/) and Andy (42) was
decomposed into U,S, V" so that:

Al= U *S;*v,"
A2=U,*S,*V,"

Then we did the combination of the singular
values and singular-vectors, the result shows in
the Figure 7.

b.) Combination of
UI*S1*12

a.) Combination of
UI*S1*V1

d). Combination of
U2*S1*12

¢.) Combination of
U2*S1*V1

e). Combination of

f.) Combination of
UI*S2*V1

u1*S2*v2

g). Combination of

h). Combination of
uz2*s2*v1

U2*S2*v2

Figure6. Result of Exchanged Singular Value
with Singular Vectors

In figure6, a) shows the combination of U, *
S;*V,", which is an original image of Janet.
However, when we combined Janet’s SVs with
Andy’s singular-vector, it shows Andy’s face
image (see figure6 d)). The image has different
brightness with Andy’s original image. ¢)
shows Janet’s face, but it is a combination of
Andy’s SVs and Janet’s singular-vectors.

When we combined two pair of singular vectors
U and V, which are from two images
respectively, the outcome images look like a
“ghost”. The result show in b), ¢), f) and g),

We also tested the two images, one is a face
image and other is not a face image (e.g.
flower). The experimentation showed the same
result as two face images.

From the result we see that, though the singular
values are unique in SVD decomposition, but
the singular victors are more important for
image recognition. This fact indicates that
deeply research and further investigation on
characteristics of SVD in image processing are
necessary.

5.2 Coding With MATLAB

MATLAB is a numerical computing
environment and allows easy matrix
manipulation. Many built in functions are for
image processing. It is used to test new image
processing techniques and algorithms. Almost
everything in MATLAB is done through
programming and manipulation of raw image
data [6]

MATLAB does include standard "for" and
"while" loops, but using MATLAB's vectorized
notation often produces code that is easier to
read and faster to execute.

In this project, face recognition using SVD
were coded with MATLAB. The programs
utilize matrices operation to manipulate data to
reduce “for” loops, which reduce lines of the



code. The source code is in Appendix, for
comparison purpose, the old program for face
recognition also is attached in Appendix.

Following is partial demonstration of using
matrices operation in my program:

function [ef, d] = svdRecognition0 (newName,

r, N, A, U, S, V, fbar, e0, el)
$newName = 'janetl.tiff'; r = # of sv
chosen;
Ur = U(:, 1l:xr);
X = Ur'*A;
fnew = imread (newName) ;
fnew = imresize (fnew, [112, 92]);
f = reshape(fnew, 10304, 1);
f0 = double(f) - fbar;
x = Ur'*£0; fp = Ur*x;
ef = norm(f0 - fp);
if ef < el
D = X - x*ones(l, N);
d = sqrt(diag(D'*D));
[dmin, indx] = min(d);
if dmin < eO
fprintf (['This image is face
#', num2str (indx)]);
else
fprintf ('The input image is an
unknown face');
end
else
fprintf ('The input image is not a

face');
end

The consideration for using matrix operations is
that the inner matrix dimensions must agree, In
the program above, U is a MxM right matrix of
singular value decomposition of A (M x N), Ur
is M x r matrix that are form from U ( r is the
number of singular values we chosen).
X=Ur*A is the coordinates (position) matrix
that is the » x N dimensions for training set A. x
is a coordinates vector in the » x N subspace for
testing image.

Here:
X=Ur*A =[Ur*a;, Ur*a,, ..
= [X1, X2, .., XN]

.,[h”*aAd

Where
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X11 X1 X
Xio X2 X2
X;p = , Xo= > XN =

xlr x2r er
X
Xy

and X =

X

When computing the distance of each points
between the training set and testing image,

D =X - x*ones(1, N)

In order to have agreed dimensions to operate
the matrix X and vector x , we need to transfer
the vector x to the matrix form by operation
x*ones(1, N),

o
Xy
x*ones(1, N) = [1,1,...1]
_xr
_xl X1 X1
o X, X,
X, X, .. oX,
(rxN)

So that the coordinates distance matrix between
the testing image and each image in the training
set

D= [D], Dz, coey DN]
Where
X, —xl Xy —xl
D,= X =X, Dy = Xy2 — X3
_‘xlr _xr | _er _xr B




The minimized distance between training face
and testing image:

d = sqrt(diag(D"*D))

Where

D

D;
D'*D = [D], DQ, ceey DN]
LD\
" D,'D, D,'D,
_ DZVDZ
_DN'DI DN'DN
diag(D*D)= [D,'D,, D,'D,, D,'D, ]

Therefore
d = sqrt(diag(D'*D))

is a vector of the minimized distance between
training face images and testing image.

The code for image compression and computing
the MSE for image compression are also in the
Appendix.

6. CONC LUSION AND FUTURE WORK

This project has applied technique of linear
algebra “singular value decomposition (SVD)”
to digital image processing. Two specific areas
of image processing are investigated and tested.

Basis on the theory and result of experiments,
we found that SVD is a stable and effective
method to split the system into a set of linearly
independent components, each of them is
carrying own data (information ) to contribute
to the system, Thus, both rank of the problem
and subspace orientation can be determined.
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SVD has the advantage of providing a good
compression ratio, and that can be well adapted
to the statistical variation of the image; but it
has the disadvantage that it is not fast from the
computational point of view, and the problem
of which its application is strongly conditional
due to the excessive work of associate
calculations.

The result obtained for image compressing has
satisfactory of image compression ratio
compare with image quality; the results for face
recognition with a small error percentage
compare recognition using the original image
dimensions. The face recognition test
performed using the image that project into
face—base show that it is necessary to improve
the algorithm to work with complex objects.

Some of images are simple so that only needs a
few singular values to obtain the approximation,
and the complex parts needs to use more values
to maintain their quality. We can conclude that
the image does not require a same k in its
totality.

Overall, The SVD approach is robust, simple,
easy and fast to implement. It works well in a
constrained environment. It provides a practical
solution to image compression and recognition
problem. Instead of searching a large database
of faces, by using base-faces, this small set of
likely matches for given images can be easily
obtained.

Future work consists three aspects, one is to
work on more complex image such as vary
large size 2-D image or 3-D images with SVD
technique for image compression and
recognition; second, deeply to study and
investigate the roles of singular values and
singular vectors in image processing. Third, this
application is completed on the MATLAB, in
the future; the application can be performed
with programming of Java or C++, so that the
real-time image processing can be achieved.
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Appendix
Partial Source code:

1. code for face recognition

function [ef, d] =
svdRecognition0 (newName, r,
Vv, fbar, e0, el)

$newName = 'janetl.tiff'; r =
choosed;

N, A, U, S,

# of sv

fnew imread (newName) ;
fnew imresize (fnew, [112,
f = reshape(fnew, 10304, 1);
f0 = double(f) - fbar;
x = Ur'*f0;
fp Ur*x;
ef norm(£f0 - fp);
if ef < el

D =X - x*ones(l, N); d =
sgrt (diag(D'*D)); [dmin, indx] =

if dmin < eO

fprintf (['This image is face

#', num2str (indx)]);

else

Ur = U(:, l:xr); X = Ur'*A;

921);

min (d) ;


http://en.wikipedia.org/wiki/Digital_image_processing

fprintf ('The input image is an
unknown face');
end
else
fprintf ('The input image is not a
face');
end

function [A, U, S, V,
svdDecomp (fileName, N)
$fileName = 'imageset.txt';
fid = fopen (fileName) ;
S = zeros (10304, N);
for i=1:N
face = fgetl (fid);
fi = imread (face);

fbar,basefi] =

subplot (ceil (sqrt (N)),ceil (sqrt(N)),1);

fprintf (1, '%s.\n', face);
figure(1l); imshow (fi);

fi =
double (reshape (£1,10304,1));
S(:,1) = fi;
end
fbar =
figure (2);
112, 92));
A = S - fbar*ones(l, N);
[U, S, V] = svd(a, 0);

(mean(S'))';
imshow (reshape (uint8 (fbar),

2. Code for Exchange Singular Value and
Singular Vectors

function
[Al,A2]=SVDExchange (Imagel, Image2)
Al=imresize (imread (Imagel), [112,92]);
A2=imresize (imread (Image2), [112,92]);;
sl = size(Al); %
of the image
s2 = size(A2);
ssl =size(sl);
ss2 = size(s2);
if ssl(:,2)== 3; % 1f the
image is a color image in jpeg or Jjog
formatn it will covert to the grey
scale

find out the size

Al = rgb2gray (Al);
end
if ss2(:,2)== 3; % 1f the

image is a color image in jpeg or Jjog
formatn it will covert to the grey
scale

A2 = rgb2gray (A2);

end
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[ul,sl,vl]=svd(double (Al)) ;
[u2,s2,v2]=svd (double (A2)) ;
compbinfl=uint8 (ul*sl*vl"');

figure (1l); imshow (combinfl);
title('combination of ul*sl*vl');
combinf2=uint8 (ul*sl*v2"');

figure (2); imshow (combinf2);
title('combination of ul*sl*v2');
combinf3=uint8 (u2*sl*vl"');

figure (3); imshow (combinf3);
title('combination of u2*sl*vl');
combinf4=uint8 (u2*sl*v2"');

figure (4); imshow (combinfd);
title('combination of u2*sl*v2');
combinf5=uint8 (ul*s2*vl"');

figure (5); imshow (combinf5);
title('combination of ul*s2*vl');
combinfo=uint8 (ul*s2*v2"');

figure (6); imshow (combinf6) ;
title('combination of ul*s2*v2');
combinf7=uint8 (u2*s2*vl"');

figure (7); imshow (combinf7);
title('combination of u2*s2*vl');
combinf8=uint8 (u2*s2*v2"');

figure (8); imshow (combinf8);
title('combination of u2*s2*v2');

3. Code for Image Compression and MSE
function AK = svdPartSum (A, K)
A=double (A7) ;
[u,s,v]=svd(A);
AK=u(:,1:K)*s(1:K,1:K)*v(:,
AK=uint8 (AK) ;

imshow (AK) ;

1:K)';

function [MSE,MSEA,m,n] =ComputMse (A,
AK)

m=size (A, 1) ;

n=size (A, 2);

e=0.0;

MSEA = 0.0;

A=double (A) ;

AK=double (AK) ;

for i= 1:m
for j=1:n
e = (A(llj)_AK(llj))/\2;
MSEA =MSEA +te;
end
end

MSE=MSEA/ (m*n) ;

4 Old Program for Face Recognition

clear;
clc;



Filename = 'trainingset.txt';
9900000000000000000000000000000000000 0o
OO0OOO0OOOOOOOOOOOOOOOOOOOOODODOOOOOOOOOODOO™O
0 00000000000000000000000000000O0
000000000000 000000000000000000VV
$this function getrs the training
faces which is stored in a text file
% and store them in an array 'face'$%
9900000000000000000000000000000000000 o
OO0OO0OO0OOOOOOOOOOOOOOOOOOOOODODOOOOOOOOOODOO™O
9900000000000000000000000000000000
OO0OOO0OOOOOOOOOOOOOOODOOODOOODODOOOOOODOO™O
num =25;
fid = fopen (Filename); %open a file
images = zeros (10304, num);

for i = l:num

face = fgetl (fid);

readface = imread(face); %
read image from graphic file and
return image data in array

s = size(readface); %
the size of the image arrey

ss =size(s);

if ss(:,2)== 3; % 1if the

image is a color image in jpeg or jog
formatn it will covert to the grey
scale

find out

readface =
rgb2gray (readface) ;
end
readface = imresize (readface,
[112,92]);
readface

= (reshape (readface,10304,1)); %
reshape the 92*112 vector as a single
column of 10304
images (:,1)
faces contain "num"
end

[

= readface; %
number of images

faces = images;

S = size(faces,2); %Determin
the number of faces selected,2 is dem
of the faces , returns the size of the
dimension of face in dim?2

%psi = (mean(faces'))'; %
deturmine the avg face of all the
training faces

psi = mean (faces,2);
for i=1:5;
phi(:,1)
% substruct each of
faces from avg face
end

faces(:,1i)-psi;
the training

o° oe
o©
o\
o©
o\
o©
o\
o©
o\
o©
o\
o©
o
o©
o
o©
o
o©
o
o©
o
o©
o
o©
o
o©
o\
o©
o\
o©
o\
o©
o\
o©
o\
o©
o\
o
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%$[U,S,V] = svd(X, 'econ")
produces the "economy size"
decomposition.

$If X is m-by-n with m >= n, it
is equivalent to svd(X,0).

$For m < n, only the first m
columns of V are computed and S is m-
by-m

also

9900000000000000000000000000000000000 o
OO0OO0OO0OOOOOOOODOOOOOOOOOODOOOODOOOOOODOOOODOO™O
9900000000000 000000000000 0
OO0OOO0OOOOOOOOOOOOOODOOOODOOODO™O

[u sig vt] = svd(phi, 'econ');

%[u sig vt] svd (phi);

si svd (siqg);

tol =

max (size(sig)) *eps (max (si))

r = sum(si > tol);

$ T rank (siqg) ;

tol =
max (size (A)) *eps (max(s));
r = sum(s > tol);

[row col] = size (sig);
new u =u(:,1:r);
fclose (fid) ;

o

o©

9900000000000000000000000000000000000 0o
OO0OOO0OO0OOOOOOODOOOOOOOOOOOOODODOOOOOODOOOODOO™O
990000000000
O O0OOO0OOOOOOOO©O

. . .

% project of image onto the
face space

fid = fopen (Filename) ;
images =zeros (10304, num) ;
for i=1:num
face =fgetl (fid);
readface = imread (face);
s = size(readface);
ss =size(s);
if ss(:,2)== 3; % if the image
is a color image in jpeg or jog
formatn it will covert to the grey
scale
readface =
rgb2gray (readface) ;
end

readface=imresize (readface, [112,92]);
readface =
double (reshape (readface,10304,1));
proj = new u'*(readface-
psi);
proj matrix(:,i) = proj';

()
3
Q.

o
oe
o
oe
o
oe
o
oe
o
oe
o
o

o° oe
oe oe
o° oe
oe oe
o° oe
oe oe
o° oe
oe oe
o° oe
oe oe
o° oe
oe oe
o° oe
oe oe
o° oe
oe oe
o° oe
oe oe
o° oe
oe oe
o° oe
oe oe
o° oe
oe oe
o° oe

o° o oe

Test the image



5555 %%555%%5%5%%55%%5%%55%%%%%% subplot (ceil (sgrt (num)),ceil (sgrt (num)
), 1)
test = imread('test3.tif'); fprintf (1, '$s.\n', face);
TestFace =
imresize (test, [112 92]); readface =
TestFace = (reshape (readface,10304,1));
double (reshape (TestFace,10304,1)); figure =readface;
ProjTestFace = new u' end
* (TestFace-psi); face =images;
for 1 = 1l:num readface =
TestMatrix(:,1) = double (reshape (readface,10304,1));
proj matrix(:,i) -ProjTestFace;
DistanceMatrix(:,1) =
sgrtm (TestMatrix (:,i) "' *
TestMatrix (:,1));
end
[row col] =
size (DistanceMatrix);
for i = 1l:row

evalMatrix(1l,1i) =
DistanceMatrix (i, 1) ;
end

[mi index] =
min (evalMatrix) $Minimum elements of
an array
fid =fopen (Filename) ;
for 1 = 1l:index
face =fgetl (fid);
end

figure (3)
subplot(2,2,1)
imshow (test)
title('Input Image', 'fontsize',
10);
subplot (2,2,2)
imshow (face) ;
title('Retrived
Image', 'fontsize',10);
i = 1: size(evalMatrix,2);
subplot (2,2,3);
stem (i, evalMatrix) ;

function faces =
getfaces (Filename, num)
fid = fopen (Filename) ;

images = zeros (10304, num);
for 1 = 1l:num

face = fgetl (fid);
readface = imread(face); %

read image from graphic file and
return image data in array
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